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Self-preserving turbulent wall jets over convex surfaces 
By D. E. GUITTON A N D  B. G. NEWMAN 

Department of Mechanical Engineering, McGill University, Montreal, Quebec 

(Reoeived 8 September 1975 and in revised form 22 December 1976) 

The flow of an ostensibly two-dimensional wall jet over a logarithmic spiral has been 
studied both experimentally and theoretically. It is established that, if the skin 
friction is effectively constant, the flow may be self-preserving, and this is confirmed 
experimentally for the two spirals studied (xlR = 3 and xlR = 1). The rate of growth 
has been predicted using the integral momentum equation and the integral equation 
for the combined mean and turbulent energy. Important assumptions in this theory 
are that the turbulence structure parameter u1vr/qr2 and the normalized mean position 
of the superlayer are invariant with curvature, and the experiments show that this is 
nearly true. The growth is constant for each spiral and increases with curvature. Using 
the measured rate of growth, the integral energy equation gives a satisfactory prediction 
of the turbulent shear stress, but the two-dimensional integral momentum does 
not. The turbulence is very intense in these flows and the Reynolds stresses were 
corrected using correlations of up to fourth order. However, the corrections may still 
have been too small, which would account for some of the difference between the 
calculated and measured shear stress. The outer flow of a wall jet strongly influences 
the inner boundary layer and th.is effect is found to increase with curvature. The 
conventional logarithmic law of the wall ceases to apply for xIR > 3. 

-- 

1. Introduction 
Self-preserving flows are of basic importance in the development of generalized 

calculation methods for turbulent shear flows, and those with curvature are of parti- 
cular interest because even small curvature produces large changes in the flow structure 
and development (Bradshaw 1973). This paper is concerned with the flow of a two- 
dimensional incompressible jet in still surroundings over surfaces with a convex 
curvature which changes such that the outer part of the flow is self-preserving. Such 
surfaces are shown to be nearly logarithmic spirals. Turbulent mixing is increased by 
the convex curvature and the flow is therefore of interest as a means of increasing heat 
transfer, or increasing entrainment in an ejector. It is also of interest in the application 
of boundary-layer control by blowing as a means of energizing the boundary layer over 
aerofoils and flaps. 

The jet emerges from a two-dimensional slot and flows over the convex surface. 
A boundary layer forms near the surface and the outer part of the flow resembles a 
half-jet (figure 1). The jet entrains the surrounding quiescent fluid and thus the 
maximum velocity decreases and the width of the flow increases downstream. The skin 
friction also has a minor effect. The pressure on the surface is lower than ambient and 
rises only slowly, so that the jet remains attached: this feature is usually called the 
Coanda effect (Newman 1961). 
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FIGURE 1. Schematic diagram of flow over logarithmic spirals. (Drawn to scale.) 

Studies have been made on plane wall jets with still surroundings by Forthmann 
(1934), Sigalla (1958), Schwarz & Cosart (1961), Myers, Schauer & Eustis (1961), 
Gartshore & Hawaleshka (1964), Tailland & Mathieu (1967), Kohan (1968) and others. 
Much of the work followed Glauert's (1956) original analysis. Skin-friction measure- 
ments were specifically made by Parthasarathy (1964) and Alcaraz, Guillermet & 
Mathieu (1968). In all these measurements the length scale y4m varies linearly with 
downstream distance x and the maximum velocity Urn varies as xa, where a is only 
slightly smaller than -9. Flows over curved surfaces of constant radius have been 
studied by Nakaguchi (1961), Newman (1961), Fekete (1963), Guitton (1964), Shridhar 
& Tu, (1969) and Spetel, Mathieu & Brison (1972). There exists only one detailed 
experimental study of self-preserving flow over logarithmic spirals (Giles, Hays & 
Sawyer 1966). An earlier investigation by Sawyer (1962) is included in that work. 
They measured the mean velocity and surface pressure on three convex logarithmic 
spirals (x/R = 3, $, 1) and two concave ones (x /R = - &, - 3), where Ris the local radius 
of curvature. The Reynolds stresses and intermittency were measured on the most 
highly curved surface (x/R = 1) .  

A comparison of the maximum shear stress measured by Giles et al. on the x/R = 1 
spiral with that calculated from the equations of motion reveals a discrepancy of over 
45 yo. There are three principal reasons for this. 

(a) The two-dimensionality of their flows, as indicated by the shear stress distribu- 
tion, is poor. It is shown in this paper ( 5  3.2) that secondary flows and, in particular, 
slight irregularities in the slot lip can lead to large lateral variations of the jet thickness. 

( b )  The Reynolds stresses F a n d  u'v' were measured with a DISA X-wire (Type 
55838) probe and for this instrument Jerome, Guitton & Patel (1971) have shown that 
thermal-wake interference may cause significant errors. 

- 

(c) The anemometer signal was not linearized. 
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Thus the basic properties of self-preserving curved wall jets remain uncertain. The 
effects of curvature on the skin friction, the law of the wall, the turbulent shear stress 
at the maximum velocity and other turbulence properties need to be determined as 
a basis for predicting more complicated curved flows. 

Integral theories have been developed to predict the effects of curvature on jets and 
wall jets. In such methods either the eddy viscosity or the mixing length is modified 
empirically to account for the curvature. The methods have been reviewed by Brad- 
shaw (1973). Differential methods have only recently been applied to these flows. 
Morel (as reported by Bradshaw 1973) has modified the length scale in Bradshaw’s 
modelling of the turbulent energy equation to account for curvature and has ap- 
parently predicted an increased growth for z/R = i$, although the calculations have 
not been made for jets with still surroundings. Irwin & Smith (1975) have applied the 
Launder, Reece & Rodi (1973) model of the four equations for the individual com- 
ponents of the turbulence stress tensor in two-dimensional flow. They include the 
additional production terms due to curvature. They also make a correction to the 
pressure, velocity-gradient correlation in the equation for the  shearing stress to 
account for the presence of a wall. The model equation for dissipation and the mean 
momentum equation are assumed to be unaffected by curvature. This theory therefore 
applies only for very small curvature (x /B  less than about 0.08) but over this range 
predicts rates of growth in good agreement with the present measurements. The theory 
is particularly impressive in its ability to predict that the curvature effect on the rate 
of growth for a free jet is about one-tenth of that for a wall jet, which is in agreement 
with Smith’s (1973) measurements. 

In  the present investigation two convex spirals have been used ( x / R  = 8 , l ) .  
Particular care has been taken to establish flows that were two-dimensional in the 
mean. Skin friction has been measured with a heated element on the surface (Bellhouse- 
& Schultz 1966; Brown 1967) and compared with Preston-tube readings to investigate 
the law of the wall. The mean velocity and the turbulence stress tensor were obtained 
from hot-wire readings corrected for the effects of high intensity turbulence, which is 
typically 50 % at yhm. Intermittency in the outer part of the flow was also measured. 
A slot Reynolds number of about 3 x lo4 was used in all experiments, including the 
comparative measurements on a plane, uncurved wall jet. 

Integral theories for the mean velocity and surface pressure are presented. In  
addition, Townsend’s (1970) theory, which is based on the flux of mean and turbulent 
energy integrated across the flow, is modified and applied to obtain a prediction for the 
rate of growth. 

2. Theory 
2.1. Governing equations 

The time-mean momentum equations for two-dimensional turbulent flow over a 
curved wal! of local radius R are (Goldstein 1938) 

(‘1 
- 22v’ 

(p+pu’2)- 1 + -  - (u’v’)-- ( R 
au uv 1 a v-+-=--- 
ay R pax 
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along the wall, in the direction x, and 
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perpendicular to the wall, in the direction y. 
In  the above equations the mean velocity components are u and v in the x and y 

directions and dashes denote fluctuations about the mean. R is taken as positive for 
flow over a convex surface. The flow has been assumed to be incompressible. All viscous 
terms have been neglected, so that the equations apply everywhere except in the 
viscous sublayer. 

The corresponding mean continuity equation is 

-+- v 1 + -  = o .  
au ax ay a [ ( $1 (3) 

If Lo is a measure of the width of the wall jet, it  is proposed to investigate flows which 
both conform to the boundary-layer approximation, so that Lo/x < 1, and are of small 
curvature, so that Lo/R << 1.  R / x  is of order 1.  If the velocity component u is O( l ) ,  v is 
O(Lo/x) from (3). The dominant terms in ( 2 ) ,  which are of order 1, are therefore 

~2 i a - -- - - ---(p+pv’2). 
P aY 

(4) 

Since the pressure outside the wall jet isp,, (p +pvT-prn)/p is O(L,/R). The pressure 
term in ( I ) ,  p-la(p+p?)/as, is therefore O(Lo/R) and is obtained with sufficient 
accuracy from the approximate equation (4). 

2.2. Self-preservation 
Consider the part of the wall jet outside the viscous sublayer as it proceeds over a 
convex surface (figure 1). It is self-similar for both the mean flow and the turbulent 
apparent stresses if 

- - -  
u = Urnf’(T), -U‘Vl = U&g&), u12-v‘2 = U& s(rl), 

where 7 = Y/Yirn* 
Since the region being investigated embraces part of the wall region it is implicitly 

assumed that Um0c U,, where V,  is the skin-friction velocity (rw/p)*. Thus the Reynolds 
number must be suficiently large for the skin-friction coefficient C, = 2(U,/Um)2 to be 
effectively independent of x .  

The cross-flow velocity v is obtained by integrating the continuity equation (3) from 
y = 0 ignoring the contribution of the viscous sublayer: 

where f (0) = 0 by definition. 
Integrating (4) from large y gives 
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Substituting ( 6 )  and (6) into (1) and writing the resulting equation to order ytm/R 
yields 

-- Y*rn urn [ f '2- ff" + 2 g ]  -% [ff I' + q g ' ]  - g i 2  urn a x  

This equation describes a self-preserving flow and thus all the terms outside the square 
brackets must be independent of x .  It follows that 

urn cc xa, 

where a is a constant. The surface defined by Rcc x is a logarithmic spiral, which is 
given in polar co-ordinates by r cc eRelz. 

The exponent a may be found by integrating (1) across the flow. Multiplying ( 1 )  by 
R + y ,  using the continuity equation (3) and integrating from 0 to co gives 

/om(R+y)-[u2+p/p+u'P]dy= a - R S .  

ax P 

Substituting for the pressure from (4) and ignoring the difference between u'P andv'2 
yields 

which on rearranging and neglecting terms of order (Y , , /R)~ becomes 

Substituting the self-preserving equations then gives 

This differs from the value a = - 4 given by Giles et al. for all values of y),/R when 

The surface pressure distribution on the logarithmic spiral is not obtained to 
Cf = 0. 

sufficient accuracy by integrating (4). Integrating ( 2 )  across the flow gives 

where ps  is the pressure on the surface. The last two terms are usually negligible for 
uncurved wall jets and will therefore be neglected. To order ( Y ~ , / R ) ~  the equation 
becomes 
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FIGURE 2. Experimental apparatus. 

Substituting u = Urn f ' ( r ) ,  using (5) and rearranging yields 

where f(m) = &. This and the other integrals 

102 = S u , f f 2 d r .  4,  = jornd'2dY 

are computed from measured profiles and displayed in table 2. a is given by (9). 

3. Experiment 
3.1. Experimental apparatus and procedure 

A detailed description of the experimental apparatus is given in Guitton (1970). It  
consisted of a 20 h.p. centrifugal blower supplying air through a flexible hose to an 
expansion chamber followed by a contraction leading to a high aspect ratio slot, 
b = 0.125in. wide and 24in. long (see figure 2 ) .  The jet issuing from this slot flowed 
round a logarithmic spiral. 
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FIGURE 3. Experimental apparatus showing slot on left and 
tra.versing gear on right: xIR = 5 spiral. 

GUITTON AND NEWMAN 

Plate 1 
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Two convex logarithmic spirals were constructed, x / R  = Q and 1, and are similar to 
two of the spirals used by Giles et al. (1966). The surfaces were made of well-seasoned 
wood. The assembly of plenum chamber, slot and spiral was mounted between large 
end plates. A fairing was fitted around the edges of the end plates to prevent possible 
separation of the entrained air flow at the edges. 

The flow from the slot was made uniform by fitting the upstream expansion chamber 
with vanes and perforated plates to eliminate separation, and gauze screens and 
honeycomb to further reduce spanwise irregularities. Experiments indicated that the 
uniformity of the jet was critically dependent on the condition of the edge of the slot 
lip (see 5 3.2). It was therefore made from a specially annealed block of mild steel which 
was carefully ground and finally rubbed with blueing compound to prevent corrosion, 
especially of the sharp edge. 

The inner wall of the slot was made from a 4 in. thick, ground, mild-steel plate. The 
joint between the steel plate and the wooden surface of the spiral was carefully 
smoothed. It was impossible to place the jet too near the origin of a particular spiral 
for otherwise the downstream flow leaving the spiral would impinge on the hardware 
supplying the jet. The spirals were therefore joined to the steel plate at  0.85 and 2.26in. 
from the spiral origin for xlR = Q and 1 respectively. In  each case the length of the 
metal plate was determined experimentally to ensure that the virtual origin of the jet, 
found by extrapolating yim to zero, coincided with the origin of the spiral. The required 
plates were 3 and gin. long for the cases x/R = Q and 1 respectively. 

Air to the compressor was filtered to eliminate dust of size 1 pm or more: dust larger 
than about 1 pm settles on the wire and makes the hot-wire measurements inacccurate. 
The flow was controlled by a bleed valve which was followed downstream by a heat 
exchanger to control the jet air temperature, which was adjusted to equal that of the 
surroundings. The slot Reynolds number was set at 2-8 x lo4 for all tests. 

The experimental apparatus for measuring the plane wall jet was that used by 
Gartshore & Hawaleshka (1964). The slot Reynolds number was set at Re = 3 x lo4 
with a slot width of 0.300 in. 

The mean velocity and Reynolds stresses were measured with either DISA type 
55825 normal or type 55A29 single-slanted wires (wire diameter 5pm, wire length 
about lmm) in conjunction with a type 55.401 anemometer. Normal wires were 
mounted parallel to the surface; slanted wires were mounted in a plane either normal 
or parallel to the surface depending on which Reynolds stresses were being measured. 
The traversing mechanism consisted of a long rod 2% in. in diameter attached to a dial 
gauge at one end and passing through a bushing installed in the surface at the other end. 
The hot-wire probe was attached to the $zin. rod (see figure 3, plate 1 )  and the hot wire 
was set 2$in. upstream of the rod to minimize interference effects. Wires were cali- 
brated before and after every traverse. 

The signal from the anemometer was fed to a linearizer (Disa type 55DlO). To 
measure mean velocity the linearizer output was connected to a voltage-to-frequency 
converter whose output was measured with a digital counter that integrated the 
signal over 1 min. To read the fluctuating signal the linearizer output was connected to 
a Hewlett Packard 3400r.m.s. meter. Broadly speaking, r.m.s. values from the normal 
wire gave the longitudinal turbulence and the two readings from a slanted wire rotated 
through 180" about the mean velocity vector gave the Reynolds stresses in the plane of 
these measurements. However, corrections were applied to compensate for the usual 

6 F L M  81 
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assumption that the turbulent fluctuations are linear perturbations from the mean 
condition. The intensity of the turbulence in convex curved jets is very high. (For 
example, at  y = y4,on the xlR = 1 spiral the present measurements gave 

(U'~)*/U = 0.44.) 

The correction terms were obtained by evaluating the wire response to fourth order in 
the velocity fluctuations (Guitton 1974). To evaluate these terms it was necessary to 
measure both third- and fourth-order turbulence correlations. This was done by using 
an X-wire (DISA, type 55838) in conjunction with two DISA type 5 5 8 0 6  correlators. 

The distance between the wire and the surface was accurately obtained by arranging 
that a cathode-ray oscilloscope be grounded when the probe touched a gauge block 
placed squarely on the surface. The dimensions of the wire probe were accurately 
obtained using an optical comparator. 

The skin friction was measured with a hot-film probe (DISA type 55A92) calibrated 
in a pipe. The platinum film had an aspect ratio of 5 with the smaller length, 0.008in., 
in the streamwise direction. In  all tests the probe was held firmly in place, flush with 
the surface of interest, by means of a special mounting. Inaccuracies due to heat 
transfer to the surrounding surface were overcome using a novel transient technique 
(Guitton 1970). The hot-film probe was heated and maintained at constant tem- 
perature by the DISA 55AOl control unit. It was desired to compare the heated-element 
results with predictions obtained from Preston tubes and for this purpose six different 
tubes were made. All tubes were carefully ground and had a ratio of internal diameter 
to external diameter well over 0.2, the value above which, according to Head & 
Rechenberg (1962), the calibration becomes independent of the internal diameter. The 
skin friction was determined using the Pate1 (1965) calibration. 

Intermittency was obtained by time differentiating the output of a normal hot wire 
and recording the resultant signal on light sensitive paper using a mirror galvanometer 
(frequency response O( lo3 Hz)). A typical trace, say for y = yd,, showed a relatively 
noiseless signal interrupted at random intervals by bursts of high frequency noise. The 
proportion of time that the trace was 'noisy' was taken to be a measure of the inter- 
mittency. Analysis of the same trace by independent observers indicated that the 
procedure gave values of mean and standard deviation repeatable to within roughly 

3.2. The establishment of quasi-two-dimensional conditions 

A common method for verifying two-dimensionality is to compare velocity profiles 
measured at  various stations off the centre-line. A less qualitative approach is to 
verify that the velocity and length scales that describe the flow vary downstream in a 
manner consistent with the two-dimensional integral momentum equation for the 
complete flow. The most sensitive technique, however, is to compare the distribution of 
measured shear stress with that calculated from the momentum equation using the 
mean velocity measurements, a procedure which becomes easily manageable for self- 
preserving flows. 

The inadequacy of the first, qualitative procedure can be demonstrated by exam- 
ining a plane wall jet in still air which has a small flow divergence with collateral 
streamlines associated with a source. For convenience the source is assumed to be 
about lo4 slot widths upstream of the slot. Using the x-momentum integral equation 

6 %. 



Turbulent wall jets over convex surfaces 163 

I I I I I I 

1.0 0.8 0.6 0.4 0.2 Centre- 0.2 0.4 0.6 0.8 1.0 
line 

2z/span 

FIGURE 4. Lateral variation of total head measured at x = 6.4in. at three different distances 
away from the x / R  = + spiral surfa,ce. 0,  with sharp knife edge slot lip; 0, after honing lip to 
form a sharp 90" corner. 

on the centre-line, the additional term due to cross-flow is then equal to about half the 
skin-friction term. Thus calculating skin friction, and with it the shear-stress distribu- 
tion, from only the two-dimensional integral momentum equation yields values which 
are about 50 yo in error. It is worth noting however that such an error in skin friction 
leads to about a 3 % error in the exponent a, so that the maximum velocity decay is 
not much affected by such small three-dimensional effects. 

It is extremely difficult to obtain satisfactory two-dimensional curved flow and it is 
therefore worth recording our efforts to  do this in some detail. First, i t  should be noted 
that we were only partially successful. Even in the final configurations, Urn calculated 
via the two-dimensional momentum equation was only within 2 % of the experimental 
value and the maximum measured shear stress was still 25 % lower than the calcu- 
lated value. 

The tendency for the flows to  depart from two-dimensionality can be traced to two 
sources: one is related to conditions at the slot lip or within the plenum chamber leading 
to the slot and the other is due to  secondary flows originating in the boundary layers 
on the end plates. 

It has been known for some time that small imperfections of the slot lip can have a 
detrimental effect on two-dimensionality (Fekete 1963). The prototype of the present 
apparatus was designed with this difficulty in mind. The slot lip was shaped like a knife 
edge, carefully ground, and the wall leading to i t  was straight and free of obstructions. 
Nevertheless the initial measurements revealed a flow of poor quality (figure 4): In 
these measurements a Pitot tube was moved parallel to, and a t  various distances from, 
the surface. 

6-2 
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Flow directions: 
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Near end plate at  y & y m  

FIGURE 5. Schematicdiagram of observed flow directions. 

A number of tests were conducted in an attempt to trace the source of these flow 
imperfections. The flow in the expansion was not separated. Placing pieces of masking 
tape across the honeycomb so as to crudely alter the flow distribution had no effect. 
Similarly, placing obstructions on both sides of the plenum chamber just upstream of 
the slot had a negligible effect on the transverse flow distribution. Surprisingly a 
remarkable improvement in the flow (figure 4) was obtained after the knife edge had 
been honed flat so as to form a sharp 90" corner. On a convex surface a thick region of 
flow at a certain spanwise position tends to grow relative to an adjacent thin region 
because the surface pressure under the former is lower and there is thus lateral flow 
from the thin region to the thick region. Small initial irregularities may therefore be 
amplified. A source of such irregularities is variation of the position of separation from 
the slot lip due to minute variations of lip geometry. Such variations are more easily 
controlled when manufacturing a 90" corner. 

The second source of difficulty relates to secondary flows near the end plates. 
Figure 5 shows schematically some flow directions detected with smoke and tufts. 
Near the end plates the surface flow on the spiral is directed towards the centre-line, 
indicating that the static pressure is higher near the corners. Not far above the curved 
surface (near ym) the secondary flow is directed away from the centre-line, and at  the 
end plate it appears to split into two parts: one forming a flat vortex in the inner 
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Y l Y * m  

FIGURE 6. Mean velocity profiles. For x / R  = %: 0, x = 5.4in.; 0, x = 194in.; 0 ,  x = 28.7in.; 
-, mean line through data. For x / R  = 1: 0, x = 16.0in.; 0, x = 19.9in.; A, x = 29.8in.; 
-, mean line through data; ---, measurements of Giles et al. (1966). 

yLr,/v =30 Y u, l v  = 300 

o i  .1 I .1 
102 103 104 

FIGURE 7. Velocity profiles in boundary layer plotted in semi-log form to calculate skin friction 
assuming existence of a law of the wall with constants A = 5.5 and B = 5.45 (method of Clauser). 
ForxIR = 8:  V, x = 13.3in; 0,  x = 28.7in. ForxlR = 1: 0, x = 14.3in; A, x = 29.8jn. 
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Cf Position 

Plane wall jet 

Hot film 0.00600\ x = 27 in. 
Prest,on tube? 
Clauser plot$ 

Hot film 0.00524) x = 42 in. 
Preston tube? 
Clauser plot1 

0.00514 Iy,Urn o.oo530j = 1-57 x 104 

Hot film 0.00473) x = 62in. 
Preston tube? 
Clauser plot1 

x ~ R  = 3 
Hot film 0.005151 x = 13.3in. 
Preston tube? 0.00515 ymUm - 

Hot film 0.005261 x = 19.6in. 

Clauser plot1 0 . 0 0 ~ 3 0 ~  y - 2.1 lo4 

Preston tube? 
Clauser plot1 

Hot film 0.004441 x = 28.7 in. 
Preston tube? 0*00510 ymUm 
Clauser plot$ o~oo450),. = 2.73 x 104 

x / R  = 1 

Hot film 0.00540) x = 14.3in. 
Preston tube? 
Clauser plot1 

0.00448 ~ y m U m  o.oo407jT = 4 . 0 4 ~  104 

Hot film 0-00513) 2 = 29.8in. 
Preston tube? 
Clauser plot1 

0.00417 IyrnUm o.oo380j = 6.06 x 104 

t Average of five tubes. 
1 For log-law constants A = 5.5, B = 5.45. 

TABLE 1. Comparison of skin friction measured with hot film, 
Preston tube and Clauser plot. 

layer and the other contributing to the rapid expansion of the boundary-layer flow. 
The rapid expansion of the side flow creates a U-shaped wall jet in which the side flow 
becomes so large that it may encroach upon the central flow. This type of secondary 
flow differs from that which occurs in a curved rectangular channel. In a channel the 
pressure gradient imposed on the boundary layers which form on the two plane side 
walls is balanced by an increased curvature of the slower-moving fluid there, and 
consequently the flow along these walls has an additional component of velocity 
directed towards the centre of curvature of the channel. 

The principal objective w;t9 to minimize this problem, and consequently no detailed 
experiments were made to determine its precise nature. The technique finally adopted 
was to add a number of small end plates arranged in a ladder formation so that each 
succeeding end plate cut off the boundary layer formed immediately upstream of it 
(see figure 3). An attempt was made to limit the number of end plates in order to 
minimize blockage and brief trials indicated that a ‘ladder’ consisting of three end 
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7 w l f p  G ( = C , )  

FIGURE 8. Effect of curvature on the relation between C, and the Reynolds number ymUm/v. 
0,planewall jet; A,x/R = Q; [7,x/R = 1.Otherdataforplanewalljet:---,Alcarazetal. (1908); 

, Escudier et al. (1966). 

plates would be satisfactory for the downstream extent of the present measurements. 
The position of each end plate was determined by trial and error. 

4. Discussion of results and comparison with theory 
The mean velocity profiles, as measured with hot wires and corrected for high 

intensity turbulence, are shown for the two spirals xIR = 8 and 1 in figure 6. The 
results are seen to collapse onto a single curve when non-dimensionalized using yirn 
and Urn. The similarity extends well into the boundary-layer region and the value of 
y,,Jy~~ is constant in each case, becoming larger as the surface curvature is increased. 
The results of Giles et al. for x/R = 1 are also shown and the disagreement with the 
present measurements is noteworthy. 

In  figure 7 the results for the inner boundary-layer region are plotted in logarithmic 
form in the manner proposed by Clauser (1954). In these figures the universal log law 
proposed by Pate1 (1965) has been assumed: 

UlU, = 5*51og (yUJv)  + 5.45. 

The results for two stations are shown in each case. Such a presentation is extremely 
sensitive to errors in y, and errors of & 0.001 in. were certainly possible. For all the 
points of interest the distance from the wall exceeded 100 wire diameters, so that there 
was no significant additional heat loss due to the presence of the wall. From these curves 
a logarithmic region can be discerned for 30 < yUJv < 300 and the value of the skin 
friction ma.y be estimated. The values may be compared with those obtained using 
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FIGURE 9. Effect of curvature on the linear growth rate. 0, plane wall jst; 
A, x/R = #; 0, x/R = 1; -- -, measurements of Giles et al. (1966). 

Preston tubes and with values obtained from the heated elements: they are given in 
table 1.  For the x / R  = 3 spiral the agreement is satisfactory although a fixed error in y 
is apparent for the mean velocity measurements at xlb = 106. The log law appears to be 
valid for the boundary layer on this surface. For the x / R  = 1 spiral the agreement is 
less satisfactory, the heated-element results being significantly larger than the others. 
It is possible that the conventional logarithmic law of the wall no longer applies owing 
to the curvature of the flow. This disagreement cannot be convincingly attributed to 
the adverse pressure gradient because (v/pUo) dp/dx = 0.0015, which is significantly 
less than the value 0.01 quoted by Pate1 (1965) for an adverse pressure gradient. 

The heated-element measurements of skin friction are plotted logarithmically 
against ym Umlv in figure 8. The present results for a plane wall and the two logarithmic 
spirals are shown. The dashed line is the best fit to the balance measurements of 
Alcaraz et al. (1968) for a plane wall jet, and the chain-dotted line is that given by 
Escudier, Nicoll & Spalding (1966) for the same case. The agreement with Alcaraz 
et al. is well within the scatter of their data. It is noted that the skin-friction coefficient 
for a given ym U,/v is significantly increased by the curvature as might be expected. 

Evidence that each flow was self-preserving is now presented. The half-width yim is 
plotted against x in figure 9. The results lie convincingly on straight lines with the 
origin of the jet growth coinciding with the origin of the spiral in those two cases. The 
rates of growth are significantly less than those measured by Giles et al., who used 
apparatus of lower aspect ratio. Their measurements are considered tgbe less accurately 
two-dimensional than ours because the agreement between measured shear and that 



Turbulent wall jets over convex surfaces 169 

1.0 D. 

I 2 3 4 5 6 7  
X I X  ref 

FIGURE 10. Streamwise variation of maximum velocity. A, x / R  = 8 ;  0, x / R  = 1; 

Data of Giles et al. (1966) for same spirals are represented by filled symbols. 
-, Um/Umrei = (x/x&O.6~~; 9 u m / u m r e i  = ( x / ~ r e i ) F ~ ' ~ ~ ' .  

FIGURE 11.  Streamwise variation of the surface pressure. A, x / R  = Q; 0, x / R  = 1; -, calcu- 
lated from full y-momentum equation ( 1  1); ---, calculated from (1  1 ) .  Logarithmic scales. 

calculated from the rate of growth is significantly worse (see $3.2) .  However, the 
discrepancies are less than those of previously published data for the plane wall jet in 
still surroundings. Kohan (1968) has reviewed these data and quotes values of dyi,/dx 
ranging from 0.06 to 0.08 for slot Reynolds numbers greater than 1.2 x lo4. 

Values of UnalUrnrei are plotted logarithmically against x/xref in figure 10 and lie 
convincingly on a straight line in each case. It was necessary to use a reference station 
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FIGURE 12. Intensity ofu'fluctuation across the jets. Forx/R = #: 0, x = 5.7 in.; A, x = 13.3in.; 
V, x = 19.6in.; n, x = 23-5in.; 0,  x = 28.7in.; ~ , mean curve through the experimental 
points correoted for high intensity. For x / R  = 1:  0, x = 14.3 in.; 0, x = 19.9in.; A, r = 29.8in.; 
-, mean curve through the experimental points corrected for high intensity; ---, measure- 
ments of Giles et al. (1966). 

in presenting these results because of the somewhat arbitrary position of the slot in 
relation to the origin of the spiral. The predicted slopes calculated from (9), using the 
heated-element values of Cf, are shown and have been tied to the first experimental 
point in each case. Agreement is good for x / R  = 8, but the predicted slope is somewhat 
larger than the measured value for x/R = 1. 

The measured surface pressure p ,  is plotted as (pa -ps) /pUk against x in figure 11. 
For a self-preserving flow it should be constant in each case. The value predicted to 
order (y*m/R)2 by (11) (using (9) for a )  is also shown. Agreement is very good for 
x / R  = 8. For x / R  = 1 it is less satisfactory and this can be attributed partly to the 
higher curvature, since a better prediction is obtained when the pressure is calculated 
from the full momentum equation (solid lines in figure 11) .  

d 2 / U &  is shown in figure 12 for the two cases. For x / R  = 8 it is interesting to note 
that the flow at  the upstream station is not self-preserving for T2 over the inner half 
of the flow, even though it is self-preserving for the mean velocity there. The solid 
lines on the figure represent the mean curve through the experimental points corrected 
for high intensity turbulence. The dashed curve represents the measurements of Giles 
et al. for x / R  = 1 ; the discrepancy for large y/ytm may be partly attributed to their use 
of a non-linearized hot-wire anemometer. It is noted that the longitudinal turbulence 
is generally higher for the larger curvature. The corresponding curves for v'"lUL and 

- 
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FIGURE 13. Intensity of v' fluctuation across the jets. Symbols ae in figure 12. 

- 
w'2/Ui are shown in figures 13 and 14 with the solid curves again representing the mean 
curve corrected for high intensity effects. The increased turbulence level for xIR = 1 
is again noted. It is particularly noticeable in the mean curves for twice the turbulence 
energyq'2/U& = (u'2+v'2+w12)/U: shown in figure 1.5, where measurements in a 
plane wall jet are also presented. The deviation of results for v'"/U& andW'2IUk for 
x / R  = 8 at the far-downstream station in figures 13 and 14 is attributed partly to 
three-dimensional effects and partly to inaccuracies in the measurement of intense 
turbulence. Surprisingly, such a discrepancy is not noticeable for .'"/U& on the 
x/R = 1 spiral and there may have been a cancellation of errors in this case. The 
measurements by Giles et al. are also shown and are much lower. The disagreement is 
attributed partly to their use of cross-wires with thermal-wake interference (Jerome 
et al. 1971). They did not measureW'2/Ui. 

The turbulent shear stresses u'v'/U& are shown in figures 16 and 17. The results 
again collapse quite well onto single curves for each case, and the solid lines show the 
mean values corrected for high intensity turbulence. The starred points are values 
calculated from the x-momentum equation (1) using the static pressure from (4). They 
are seen to be significantly higher. This discrepancy is attributed to a slight divergence 

- - -  

- 
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FIQURE 16. Shear-stress distribution across the jet, x/R = Q. *, calculated from momentum 
equation; A, x = 13.3in.; 0, x = 23.5in.; 0,  x = 28.7in.; __ , mean curve through experi- 
mental points correoted for high intensity. 

of the flow from truly two-dimensional conditions, a divergence which does not 
significantly affect the turbulence but gives errors in the calculated shearing stress 
(see 3 3.2 for further details). In  figure 17 the measurements of Giles et al. are shown 
to be in good agreement with the present measurements for the inner part of the flow, 
but to deviate significantly in the outer part, where the turbulence is relatively high. 

The mean velocity and turbulent stresses are replotted against yly, for the boundary- 
layer region in figures 18-21 and again collapse quite well onto a single curve in each 
case. Thus the similarity dictated by the outer flow extends well into the boundary- 
layer region. Moreover the shearing stress (figure 21) remains positive in this region 
even though au/ay becomes positive. It is interesting to note that the position of zero 
shear stress is at y/y, = 0.3 for x /R  = 6 and at  y/y, = 0.1 for x /R  = 1.  The corre- 
sponding position for the plane case is yly, = 0.5: and it is clear that the outer region 
exerts more influence on the inner layer as the curvature increases. 

The longitudinal turbulenceT2 and the normal turbulence- are plotted using the 
wall-law scaling parameters in figure 22. The results for .'"/U,Z do not collapse onto 
single curves and the deviation is greater for x/R = 1.  On the other hand, the values 
ofv'21U; tend to conform to a single curve for both values of x/R. This type of behaviour 
is attributed by Townsend (1961) to the presence of an inactive component of turbu- 
lence which is swirling in planes parallel to the wall. 

Intermittency measurements for the three cases are shown in figure 23. Results for 
two downstream stations are shown for the x /R  = Q spiral, and these collapse con- 
vincingly onto a single curve. The measurement of intermittency by Giles et al. for an 
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FIGURE 23. The dependence of the intermittency distribution on curvature. 
A, 2 = 13.3in.; V, x = 19.6in. For x/R = 1: 0, z = 19.9in.; --- , data of Giles 

, mean velocity profile. 

For x /R  = #: 
et al. (1966); 

x/R = 1 spiral is also shown. Disagreement with the present measurements may be 
noted. Some disagreement with the measurements of Giles et al. for a plane wall jet was 
also noted in a comparison which is not shown here. It is partly due to the somewhat 
subjective nature of the measurement itself. However, the present measurements 
appear to  be consistent with one another. They indicate that the mean position 
ye/y+, of the superlayer moves inwards as the curvature is increased while the relative 
width of the intermittent region, as measured by the standard deviation, u/y~,, is 
somewhat smaller for the curved flows (see figure 26). 

In figure 24 the ratio u'2/v'2 for the three cases is plotted against y/y*, and the 
relatively large increase of 7 due to curvature is apparent. In  plane flow the turbu- 
lence production term is found only in the equation f o r p .  I n  curved flow, however, 
the equation for- also contains such a term. The ratio of the production term for 8 
to the production term f o r p  in curved flow (which is shown by Bradshaw ( 1  969) to be 
analogous to the flux Richardson number for buoyant flow) is 

-- 

which to O(y+,/R) for a self-preserving flow a t  y = yim gives values of 0, 0.3 and 0.7 for 
x/R = 0, 6 and 1 respectively and provides an explanation of the trends shown in 
figure 24. 

The structure parameter u'v'/q'2 is shown in figure 25 and appears to be insensitive 
to curvature within the accuracy of the present measurements. This is consistent with 
the assumption made by Townsend (1 970). 

-- 
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Iol = 1.05 
I,, = 0.75 
I,= 0.605 
I, ,  = 0.35 

,Io1 = 0.816 
,Ioa = 0-684 

,I,, = 0.262 

TABLE 2. Integrals used in the theoretical analysis and evaluated 
using experimentally measured velocity profiles. 

Attempts have been made to predict the effect of curvature on rate of growth for 
these flows. Irwin & Smith (1975) have modified the model equations for the Reynolds- 
stress tensor developed by Launder et al. (1973) to account both for the presence of a 
wall and for small curvature. The curvature is taken to be so small that the pressure 
variation perpendicular to the flow is neglected in the downstream momentum 
equation and the predictions are in fair agreement with the measurements of Giles et al. 
for x / R  < ). An interesting feature of Irwin & Smith's results in that the dissipation 
length scale is a nearly constant proportion of y i m  and independent of the curvature. 
This had been previously assumed by Townsend (1970). I n  his theory Townsend 
incorporated the variation of pressure across the flow and the calculations should 
therefore apply for higher curvatures and be relevant to the present study. 

He used the momentum equation integrated across the complete flow, 

and the total energy equation, which we here also integrate across the complete flow 
to obtain 

where the f's are integrals defined and evaluated in table 2 and the turbulent normal 
stresses are neglected. Also, ye defines the half-intermittency point, qo is the turbulence 
velocity scale, defined by 

and L, is the dissipation length scale 

qi Y e / j o m  EdY, 

where E is the rate of dissipation of turbulence energy per unit mass. In  deriving the 
total energy equation, the small curvature term 
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FIGURE 26. Dependence on curvature of intermittency u/y+ edge of superlayer 
y&hm and turbulence structure parameter p:/(u"). 

has been derived assuming that B is constant from y = 0 to ye and is zero for larger 
values of y. 

. If  it  is assumed that r,/pUk, ye /y tm and L,lytm are constant, and there is some 
support for the first two assumptions in the present measurements, then there are 
three unknowns: yarn, Urn and po. To obtain a solution Townsend (1970) derived a third 
equation from the momentum equation stated at y = ym. We have tried this method 
but it did not lead to satisfactory predictions. It has therefore been replaced by a 'half' 
integral momentum equation with limits y = 0 and y = yim. 

Correct to order (y tm/R)2  this equation is 

The full momentum equation (12) may be used to eliminate (y*,/U,)dU,/dx from (13) 
and (14) and the values of the integrals from table 2 may be inserted. Energy combined 
with full momentum gives 
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3 

- 
Both these equations relate the rate of growth dytm/dx to the shearingstress (u'v')iJUk 
if values of rw/pU%, yim/L,, y,/yt, and qi/(u'v')bm may be assigned. 

From figure 8, r,/pUk does not vary greatly with curvature and an appropriate 
average value is 0.0025. Following Townsend it is assumed that y+,JL,is independent 
of curvature (Irwin & Smith 1975). From the present measurements (figure 26) 

q;/(u'v')+, is also nearly constant. Some variation of ye/ytm is observed in the present 
measurements (figure 26) but i t  is not large. Accordingly, the following values are 
assumed: 

where y&,/L,is obtained from the measured rate of growth of a plane wall jet using 
(15) and (16) with R + co. Kohan (1968) quotes values ranging from 0.06 to 0.08. 
The present measurements give 0.071 and this is considered to be the most plausible 
value. It gives y+,/L, = 0.42. 

The solution of (15) and (16) could have been obtained by iteration. However, it is 
more revealing to display each equation graphically. In figure 27 the energy equation E 
[equation (15)] and the momentum equation M [equation (IS)]  are plotted for the two 
spirals. Three energy curves E,, E and E,  are shown, corresponding respectively to t,he 

- 

- 

q:/(u'v')g, = 5.15, y,/y+, = 1.8, 
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FIGURE 27. Dependence of calculated (U'V')+,,/U; on dy+,,/dx for (a)  x / R  = 3 and (b)  xIR = 1 spiral. 
Curve M is oalculated using the momentum (16). Curves El ,  E and E,  are calculated using the 
equation for total energy (15) and the plane wall jet growths dyt,,,/dx = 0.06, 0.071 and 0.08 
respectively. 

three values dy),/dx = 0.06, 0.071 and 0.08 for a plane wall jet. Thus E is the most 
plausible curve and its intersection with M gives the predictions on the left of table 3. 

The predictions are seen to be in poor agreement with the measured values. It might 
be mentioned that the second intersection in figure 28, although giving a larger value 
of dy+,/dx, is invalid and is probably due to inaccuracy in the simplified momentum 
equation when the curvature is large. 

To find out which of the equations is in error the measured values of dy+,/dx are used 
to predict the shearing stress (UIZf))*,/U;. The results are shown on the right-hand side 
of table 3. It is seen that much better predictions are obtained using the energy 
equation E ,  or better still E,. The predictions from the combined momentum equations 
M are significantly poorer (see also figures 16 and 17). This has been convincingly 
attributed to a slight divergence of the flow. Thus the failure of the prediction method 
is mainly due to the effects of three-dimensionality, which apparently affect the 
half-momentum equation much more than the total energy equation, despite the 
simplications which have been applied to the latter. 
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- 
@'V')*tII dY+m Predicted from measured - u m  d x  

Measured Predicted MzUred r -7 

R d x  d x  Tn M E El 

B 0.155 0.082 0.020 0.026 0.022 0.020 

d & n  - (u'v')gnl From curve From curve From curve - dY+m X - 

0 0.071 - 0.01 1 0.014 0.014 0.014 

1 0.277 0.098 0.027 0.032 0.030 0.028 

TABLE 3 

5. Conclusions 
(i) It has been established experimentally that wall jet flows over logarithmic 

spirals, with local radius proportional to surface distance, can be sensibly self- 
preserving. The growth rate is constant and increases significantly with the curvature 
of the flow. The measurements give 

dytm/dx = 0.07 1 + 0.8 ytm/R.  

The present curved flows have growths that are about 10 yo lower than those given by 
previous experimenters. The maximum velocity decays according to the relation 

Urn a xa, 

where a is slightly less than - 4 and is a function of skin friction m d  curvature. 
(ii) It is extremely difficult to set up a quasi-two-dimensional wall jet in which the 

measured shear stress agrees with that calculated from the rate of growth and the two- 
dimensional momentum equation. The present flows are certainly more accurate than 
those measured previously, nevertheless the measured and calculated shear stresses 
differ by 15-25 %. 

(iii) The most obvious effect of curvature on the turbulence is a dramatic increase in 
2112 compared with u? The turbulence structure parameter u'v'/qt2 is invariant with 
curvature but the large eddy scale, as indicated by the mean position ye and the 
standard deviation of the outer intermittency, appears to decrease slightly with 
increasing curvature. 

(iv) Calculations using the integral equation for total energy assuming that (w)im/q& 
ye/y+, and ytm/L,  are constant indicate that the measured shear stress is close to what it 
would be in a self-preserving wall jet which was perfectly two-dimensional in the mean. 

(v) The turbulence intensity is very high and linearized measurements of the 
turbulence stress tensor require corrections involving high-order correlations. These 
corrections have been applied. 

(vi) The shear stress a t  the maximum velocity is large and of the same sign as the 
shear stress in the outer, jet-like, part of the flow. The turbulence in the outer flow 
encroaches strongly upon that in the inner boundary layer. 

(vii) The conventional logarithmic law of the wall applies out to yU,/v = 150 for 
x / R  = 6. It does not apply for x / R  = 1. The relation between Cf and y,Umlv depends 
slightly on curvature. 

-- 
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